Bis-methionine ligation to heme iron in the streptococcal cell surface protein Shp facilitates rapid hemin transfer to HtsA of the HtsABC transporter.

نویسندگان

  • Yanchao Ran
  • Hui Zhu
  • Mengyao Liu
  • Marian Fabian
  • John S Olson
  • Roman Aranda
  • George N Phillips
  • David M Dooley
  • Benfang Lei
چکیده

The surface protein Shp of Streptococcus pyogenes rapidly transfers its hemin to HtsA, the lipoprotein component of the HtsABC transporter, in a concerted two-step process with one kinetic phase. The structural basis and molecular mechanism of this hemin transfer have been explored by mutagenesis and truncation of Shp. The heme-binding domain of Shp is in the amino-terminal region and is functionally active by itself, although inclusion of the COOH-terminal domain speeds up the process approximately 10-fold. Single alanine replacements of the axial methionine 66 and 153 ligands (Shp(M66A) and Shp(M153A)) cause formation of pentacoordinate hemin-Met complexes. The association equilibrium constants for hemin binding to wild-type, M66A, and M153A Shp are 5,300, 22,000, and 38 microM(-1), respectively, showing that the Met(153)-Fe bond is critical for high affinity binding and that Met(66) destabilizes hemin binding to facilitate its rapid transfer. Shp(M66A) and Shp(M153A) rapidly bind to hemin-free HtsA (apoHtsA), forming stable transfer intermediates. These intermediates appear to be Shp-hemin-HtsA complexes with one axial ligand from each protein and decay to the products with rate constants of 0.4-3 s(-1). Thus, the M66A and M153A replacements alter the kinetic mechanism and unexpectedly slow down hemin transfer by stabilizing the intermediates. These results, in combination with the structure of the Shp heme-binding domain, allow us to propose a "plug-in" mechanism in which side chains from apoHtsA are inserted into the axial positions of hemin in Shp to extract it from the surface protein and pull it into the transporter active site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heme transfer from streptococcal cell surface protein Shp to HtsA of transporter HtsABC.

Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort...

متن کامل

Direct Heme Transfer Reactions in the Group A Streptococcus Heme Acquisition Pathway

The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from m...

متن کامل

Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus.

The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 a...

متن کامل

Characterization of the HEME Uptake Pathway Proteins from Streptococcus Pyogenes and Corynebacterium Diphtheriae

In Streptococcus pyogenes, the protein SiaA (HtsA) is part of a heme uptake pathway system and involved in heme transfer from Shp to the ABC transporter. SiaA mutants, in which alanine replaces the axial histidine (H229) and methionine (M79) ligands, as well as a lysine (K61) and cysteine (C58) located near the heme propionates, are reported. Studies on a mutant of a cysteine expected to be at ...

متن کامل

Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus.

BACKGROUND Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 43  شماره 

صفحات  -

تاریخ انتشار 2007